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Abstract
We previously reported that metformin, a widely prescribed antidiabetic drug, induces 
the accumulation of triglyceride (TG) together with the apoptotic death of H4IIE via AMP-
activated protein kinase (AMPK) in hepatocellular carcinoma (HCC) cells. However, the effect 
of cytoplasmic fat accumulation on the growth of HCCs remains controversial. Herein, we 
investigated the effect of fatty acid synthase (FASN) inhibitors on the basal- or metformin-
induced changes including the content of cytoplasmic TG and the viability of HCC cells. 
Cerulenin and C75, inhibitors of FASN, did not significantly affect the basal TG content but 
dose-dependently suppressed the metformin-induced increase in the cytoplasmic TG content. 
Metformin-induced apoptosis of H4IIE cells was also significantly reduced by cerulenin and 
C75. Metformin enhanced the generation of reactive oxygen species which was suppressed 
by adding cerulenin or T75. Cerulenin also stimulated cell migration, which was suppressed 
by metformin. However, the degree of suppressive effect of metformin on TG synthesis, 
apoptosis, and cell migration was much more prominent by the inhibition of AMPK by 
compound C than cerulenin. In conclusion, our study found that excess fat accumulation is 
responsible for the apoptosis of H4IIE HCC cells and is informative for designing anti-tumor 
reagents, especially in HCC.
Keywords:  Metformin, Fatty acid synthase (FASN), Apoptosis, Hepatocellular carcinoma 

(HCC)

INTRODUCTION

The liver is one of the critical organs for maintaining the homeostasis and health of the whole 
human body by controlling overall energy metabolism and detoxification. At the same time, the 
incidence of hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death (Bray 
et al., 2018). Normal, healthy hepatocytes play a key role in maintaining normal blood glucose levels 
by stimulating gluconeogenesis when diet-derived glucose supply is insufficient. They also uptake the 
excess glucose from the blood plasma and then transform it into triglyceride (TG) by stimulating 
hepatic de novo lipogenesis (DNL). However, such a metabolic balance was lost in many cancer cells 
by the well-known metabolic reprogramming, aerobic glycolysis known as the Warburg effect (Ward 
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& Thompson, 2012). The ‘aerobic glycolysis’ shown in many cancer cells means that an excessive 
amount of glucose should be supplied to overcome the lower energy efficiency of cancer cells. 
Thus, the inhibition of aerobic glycolysis is one interesting metabolic target for suppressing the 
proliferation of cancer cells. Although several agents to block some steps of glycolysis have been 
tested, they have been unsuccessful because of unexpected toxicity and inefficient suppression of 
cancer cell proliferation (Raez et al., 2013).

Metformin, a widely prescribed hypoglycemic drug for the treatment of type II diabetes mellitus 
(T2DM; Rena et al., 2017), has gained interest because of its possible anti-cancer potential in several 
cancer cells and animals (Vancura et al., 2018). The basic action mechanism of metformin is to inhibit 
hepatic gluconeogenesis and increase peripheral insulin sensitivity therefore preventing hyperglycemia 
in T2DM patients. The anti-cancer potential of metformin has been suggested in many previous 
studies finding the lower incidence and mortality of various cancers including breast, colorectal, 
pancreatic, and prostate cancer in T2DM patients treated with metformin compared to the untreated 
patients (Zhang et al., 2013). In addition, metformin is also anti-inflammatory (Zhang et al., 2021), 
anti-aging (Barzilai et al., 2016), and modulates the gut microbiota (Forslund et al., 2015).

We previously reported that metformin induces apoptosis (Park, 2015) and a marked increase in 
glucose consumption and reactive oxygen species (ROS) production in H4IIE HCCs (Park, 2019). 
Our recent study also found that metformin treatment increases intracellular fat accumulation and 
also induces together with the induction of apoptosis via AMP-activated protein kinase (AMPK) 
activation in H4IIE HCC cells (Park et al., 2023). From these findings, we hypothesized that 
excessive fat accumulation might exert cytotoxic effects and that the metformin-induced lipotoxicity 
and following pro-apoptotic activity could be interfered with by the pharmacological inhibition of 
hepatic DNL by fatty acid synthase (FASN) inhibitors. Here we provide evidence that different 
FASN inhibitors reduce metformin-induced increase of DNL and apoptosis, further addressing the 
effect of hepatic DNL on the viability of H4IIE HCCs.

MATERIALS AND METHODS

1. Materials 
Fetal bovine serum (FBS) was purchased from Life Technologies (Rockville, MD, USA). 

Polyclonal and monoclonal antibodies and Horseradish peroxidase (HRP)-conjugated secondary 
antibodies were from Cell Signaling Technology (Danvers, MA, USA) and Santa Cruz 
Biotechnology (Santa Cruz, CA, USA), respectively. Materials and reagents for polyacrylamide gel 
electrophoresis and immunoblot analysis except antibodies were obtained from Invitrogen (Carlsbad, 
CA, USA). Unless otherwise specified, all other reagents were purchased from Sigma-Aldrich 
Chemical (Sigma-Aldrich, St. Louis, MO, USA).

2. Cell culture 
H4IIE cells were obtained from the Korean Cell Line Bank (Seoul, Korea) and grown in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FBS. To prepare the 
experiments, H4IIE cells were incubated in serum-free DMEM overnight to minimize the residual 
cell growth effect of FBS contained in the growth medium. The cells were washed with Dulbecco’s 
phosphate-buffered saline (D-PBS) and further incubated in DMEM containing different test 
reagents.

3. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay
Cell viability was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
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bromide (MTT) assay as described previously (Mosmann, 1983). After treatment with the reagents, 
H4IIE cells were washed twice with D-PBS and further incubated in MTT solution (0.5 mg/mL 
in D-PBS) for 30 min at 37℃. The MTT solution was removed, and the blue-colored formazan 
product was subsequently solubilized in 0.5 mL of 2-propanol for 20 min. The absorbance of the 
converted dye was measured at a wavelength of 570 nm.

4. Measurement of the glucose consumption and triglyceride (TG) content 
After treatment, the glucose concentration in the medium was measured using a glucose assay 

reagent (Asan Pharm, Seoul, Korea) based on the glucose oxidase method. The amount of glucose 
in the culture medium was subtracted from that of DMEM to calculate the glucose consumption 
(Yin et al., 2002). The amount of cytoplasmic TG was measured using an assay kit (TG-S, Asan 
Pharm) with a modification. Briefly, cells in 35-mm culture dishes were collected with a rubber 
policeman, and the cell suspension was briefly centrifuged. After the removal of the supernatant 
culture medium, the cell pellet was homogenized with 0.1 mL of lysis buffer (5% Triton X-100 in 
D-PBS) and heated for 3 minutes at 85℃. After cooling to room temperature, the homogenate 
was heated and cooled twice more. After centrifugation of the homogenates, the supernatant was 
used for the TG assay according to the kit’s manual. At the same time, the protein concentrations 
were also measured by a standard BCA method to normalize the amount of TG to the same 
amount of protein per sample.

5. Western blotting analysis
After treatment, the cells were lysed in ice-cold lysis buffer (RIPA, Merck, Rahway, NJ, USA) 

containing diluted inhibiting cocktails containing various proteases and phosphatases. Equal 
amounts (10–20 μg) of protein were separated using SDS-PAGE on 4%–12% polyacrylamide 
gels and transferred onto PVDF membranes. The membranes were incubated in blocking buffer 
(5% nonfat dry milk in Tris-buffered saline [TBS]-0.1% Tween-20 [TBS-T]) for 1 h at room 
temperature, after which the membranes were probed with different primary antibodies (at 
dilutions of 1:1,000–1:2,000). After a series of washes, the membranes were further incubated 
with the respective HRP-conjugated secondary antibodies at a dilution of 1:10,000. The signal was 
detected using the enhanced chemiluminescence detection system (Intron, Seongnam, Korea).

6. H33342 staining and reactive oxygen species (ROS) measurement 
The degree of nuclear condensation (a marker of apoptosis) was observed using a cell membrane-

permeable DNA-specific fluorescent dye (bisBenzimide H33342 trihydrochloride, H33342). After 
treatment, the cells were incubated with H33342 (1 mg/mL) for 15 min, then observed under a 
fluorescent microscope (IX70, Olympus, Tokyo, Japan) and imaged using a digital camera (DP-70, 
Olympus). The generation of ROS within cells was detected using 2′,7′-dichlorodihydrofluorescein 
diacetate (H2DCFDA; Halliwell & Whiteman, 2004). H4IIE cells were grown in 12-well culture 
plates and treated with the reagents. After treatment, H2DCFDA (10 μmol/L) was added to 
each well and further incubated for 30 min. The DCF fluorescence (green) was observed under a 
fluorescent microscope (IX70, Olympus) and imaged using a digital camera (DP-70, Olympus).

7. Staining of cytoplasmic lipid droplets 
Cytoplasmic lipid droplets were stained with Oil Red O (Ramírez-Zacarías et al., 1992). After 

twice washing in D-PBS, cells were fixed in 10% formalin for 5 min and further stained in staining 
solution (0.3% Oil Red O in 60% isopropanol for 10 min). Excess stain was removed by washing 
in 60% isopropanol and digitally imaged. Nile red is a fluorescent dye used to stain cytoplasmic 
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lipid droplets (Greenspan et al., 1985). After treatment, the cells were washed twice with D-PBS 
and then stained with 200 ng/mL Nile red in 2% acetone for 15 min. The cells were washed again 
with D-PBS to remove excess stain, and Nile red-stained cells were observed and imaged by a 
fluorescent microscope.

8. Cell migration assay 
The cell migration assay was performed as previously described ( Justus et al., 2014). The fully 

grown cell monolayer was scrapped by a fine micropipette tip and then further incubated in the 
DMEM containing 10% FBS. Photographs were taken at 0 and 48 h, and the distance between the 
two edges was indicated.

9. Flow cytometry 
The population of apoptotic cells with subG1 DNA content was measured with flow cytometric 

analyses. The cells were plated at a density of 2.5×104 (cells/cm2) and serum-starved overnight 
to induce G0/G1 synchronization before treatment with reagents. After treatment, the detached 
cells were removed and the adherent cells were obtained by trypsin-EDTA treatment. Detached 
cells and adherent cells were mixed and briefly centrifuged. Cell pellets were rinsed with ice-
cold phosphate-buffered saline (PBS) and fixed with ice-cold 70% ethanol for 30 min. Cells were 
stained with a solution (50 μg/mL propidium iodide, 50 μg/mL RNase A in PBS) for 30 min at 
room temperature in the dark. Cell cycle analysis was carried out by a flow cytometer (Lsrfortessa, 
BD Bioscience, NJ, USA).

10. Statistics 
The experimental results are presented as the mean±SD. The significance of differences among 

groups was determined using Student’s t-test or one-way analysis of variance (ANOVA, GraphPad 
Software, San Diego, CA, USA). p<0.05 was considered statistically significant. 

RESULTS 

FASN induces DNL from acetyl-CoA and malonyl-CoA within cells. However, it is less 
expressed in normal tissues, whereas highly expressed and activated in many cancer cell types. Thus, 
it gains interest as its potential for the development of a new anti-cancer remedy. We investigated 
the effect of two FASN inhibitors on the basal- or metformin-induced increase of cytoplasmic 
TG content, which was found in our recent study (Park et al., 2023). Cerulenin is a mycotoxin 
that exerts anti-cancer cytotoxicity in several in vitro and in vivo studies (Fang & Shen, 2019). The 
cerulenin derivative C75 also induces the apoptotic death of different cancer cells (Ho et al., 2007). 
However, little is known about the effect of FASN inhibitors on DNL in HCCs.

First, H4IIE rat HCCs were treated with different doses of cerulenin without metformin.  
The concentration of glucose remaining in the culture medium was measured after 24 h, and 
intracellular TG content and cell viability were measured after 48 h treatment with cerulenin. 
No significant changes were observed in the basal glucose consumption, TG synthesis, and cell 
viability by treatment with cerulenin alone (Fig. 1A). However, the metformin-induced increase 
in glucose consumption and TG synthesis were significantly decreased by cerulenin (10 μmol/L), 
and the metformin-induced decrease of cell viability was significantly increased (Fig. 1B). When 
intracellular fat droplets were stained with Oil Red O (chromogenic) and Nile red (fluorescent), 
metformin increased the intensity of oil red and Nile red within cells, indicating the stimulation 
of cytoplasmic TG synthesis (Fig. 1A). However, the metformin-stimulated TG synthesis was 
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suppressed by cerulenin treatment. The number of small-fluorescent apoptotic bodies was also 
increased by metformin, which was decreased by cerulenin (Fig. 1B). Interestingly, the fluorescence 
intensity of DCF (formed by the ROS-derived hydrolysis of H2DCFDA) was increased by 
metformin, indicating the increase of ROS generation after metformin treatment. Cerulenin also 
suppressed the metformin-stimulated ROS generation (Fig. 1B). We further examined the effect of 
the cerulenin derivative C75 under the same experimental conditions. The effect of C75 was almost 
the same as that of cerulenin on the basal- and metformin-induced changes including glucose 
consumption, TG synthesis, and cell viability (Fig. 2A and B). Thus, it is clear that the inhibition of 
FASN does not affect the basal TG synthesis and cell viability, but it strongly blocks the metformin-
induced TG synthesis and the induction of apoptosis. The intensity of fluorescence from Nile red 
staining was much more prominent within apoptotic bodies of metformin-treated cells (indicated 

Fig. 1.   Effect of cerulenin on cytoplasmic TG accumulation and cell viability. Cells (2.5×104 cells/cm2) were incubated in a fresh serum-free culture 
medium for up to 48 h with treating reagents. Concentrations of glucose were measured using culture media after 24 h, and cytoplasmic TG content 
and cell viability were measured after 48 h (A). Intracellular fat was stained with oil red and Nile red after 48 h (B). Fluorescent apoptotic bodies were 
detected with H33342 and ROS-generated DCF fluorescence was observed with H2DCFDA after 48 h (B). Results are expressed as the mean±SEM 
(n=3) (A). Photographs of cultured cells represent 2–3 repeated experiments (B). ** p<0.01 vs. the control (non-treated cells). # p<0.05 vs. Mtf (metformin, 
1 mmol/L), Crl10 (cerulenin,10 μmol/L). ROS, reactive oxygen species; H2DCFDA, dichlorodihydrofluorescein diacetate.
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by arrows in Fig. 2A) than healthy normal cells (representing weak or less fluorescence intensity). 
These results imply that the excessively accumulated fat is harmful to cell viability and the blockade 
of excessive fat accumulation is a survival signal in H4IIE HCC cells.

We previously reported that the inhibition of AMPK can suppress metformin-induced 
lipogenesis and apoptosis, suggesting that active AMPK strongly stimulates the uptake of glucose, 
glycolysis, the formation of acetyl-CoA, a substrate for DNL in HCC cells (Park et al., 2023). 
Thus, we compared the relative potential of AMPK inhibition and FASN inhibition to determine 
which one is the more critical player in suppressing TG synthesis and apoptotic cell death induced 
by metformin. Metformin-increased TG content was significantly decreased by compound C (an 
AMPK inhibitor) compared to cerulenin. Metformin-reduced cell viability was also significantly 
recovered by AMPK compared with cerulenin (Fig. 3A). Cleavage of PARP and caspase-3 

Fig. 2.   Effect of C75 on cytoplasmic TG accumulation and cell viability. Cells (2.5×104 cells/cm2) were incubated in a fresh serum-free culture medium 
for up to 48 h with treating reagents. Concentrations of glucose were measured using culture media after 24 h, and cytoplasmic TG content and cell 
viability were measured after 48 h (A). Intracellular fat was stained with oil red and Nile red after 48 h (B). Fluorescent apoptotic bodies were detected 
with H33342 and ROS-generated DCF fluorescence was observed with H2DCFDA after 48 h (B). Cytoplasmic lipid droplets were concentrated only 
in small fragmented apoptotic bodies (arrows) and not in non-apoptotic cells (C). Results are expressed as the mean±SEM (n=3) (A). Photographs of 
cultured cells represent 2–3 repeated experiments (B). ** p<0.01 vs. the control (non-treated cells). # p<0.05, ## p<0.01 vs. Mtf (metformin, 1 mmol/L). 
ROS, reactive oxygen species; H2DCFDA, dichlorodihydrofluorescein diacetate.
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Fig. 3.   Effect of AMPK and FASN inhibition on metformin-induced pro-apoptotic responses. TG content 
and cell viability were measured after 48 h (A). Protein levels representing the onset of apoptosis (PARP 
and caspase-3) or the G1 checkpoint of the cell cycle (cyclin D1) were measured using cells incubated 
for 24 h in a serum-free culture medium and the relative amount of cleaved PARP/β-Actin was graphed 
using the average value of two repeated experiments (B). Fully grown cells were used for the migration 
assay (C). After scratching the cell monolayer (day 0), the cells were further incubated for an additional 
48 h in a growth serum containing 10% FBS and the migrated length of each group was compared 
(day 2). Cell numbers of the sub-G1 stage were also measured after 48 h with a flow cytometer and the 
average value of two experiments was graphed (D). Results are expressed as the mean±SEM (n=3) 
(A, C) ** p<0.01 vs. the control (non-treated cells). # p<0.05, ## p<0.01 vs. Mtf (metformin, 1 mmol/L), CC 
(compound C, 10 μmol/L), Crl (cerulenin, 10 μmol/L). AMPK, AMP-activated protein kinase; FASN, fatty 
acid synthase; PARP, poly (ADP-ribose) polymerase.

(Continued on next page)
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precursor proteins (markers of apoptosis progression) was promoted by metformin (Fig. 3B). 
Compound C blocked such metformin-induced cleavage of PARP and caspase-3 but cerulenin 
only partially blocked. From the cell migration assay, both compound C and cerulenin recovered the 
metformin-suppressed migration of H4IIE cells (Fig. 3C). Finally, the relative population of cells 
in the sub-G1 stage was measured by flow cytometric analysis (Fig. 3D). As supporting changes, 
the sub-population of apoptotic (sub-G1) cells was dramatically increased by metformin and again 
decreased more by compound C than cerulenin.

DISCUSSION

Altered energy metabolism in cancer cells is known as the Warburg effect (Ward & 
Thompson, 2012). Together with the alteration of glucose metabolism, lipid metabolism is also 
drastically altered in transformed cells and cancer cells (Hanahan & Weinberg, 2011). Cancer 
cells can stimulate DNL and fatty acid oxidation to produce energy or accumulate lipids for 
their proliferation. Cellular lipids are necessary for plasma membrane synthesis as well as energy 
production. Studies have found that lipids have multiple roles within cancer cells. Oncogenic 
processes also induce dysregulated lipid metabolism, which then affects membrane composition 
(Bi et al., 2019). The increase in membrane lipid saturation can induce endoplasmic reticulum (ER) 
stress and apoptotic cell death (Ackerman & Celeste Simon, 2014). Excess polyunsaturated fatty 
acid in the plasma membrane leads to lipid peroxidation and ferroptosis (Yang & Stockwell, 2016). 
Thus, it is still controversial about the role of lipids in terms of their various or even opposite effect 
on the survival of cancer cells. Thus, the role of lipids might be a ‘sword with double edges’ like ROS 
in determining the fate of growing cancer cells or healthy normal cells.

In the liver, DNL is upregulated by insulin and glucose, which then promotes lipid storage. In 
HCC, DNL is also stimulated by glucose transported from extracellular environments (Paul et al., 
2022). Our previous study showed that glucose uptake is dramatically stimulated by metformin and 
such a dysregulated glucose uptake leads to glycolysis and TG synthesis in H4IIE HCCs (Park et 
al., 2023). Because metformin finally massively promoted apoptotic cell death, we raised a question 

Fig. 3.   Continued.
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about the action mechanism of metformin’s pro-apoptotic activity. Metformin’s lipogenic- and 
pro-apoptotic activity was decreased by the inhibition of AMPK. If the excess stimulation of TG 
synthesis is the main cause of metformin’s pro-apoptotic activity, the pharmacological inhibition of 
FASN can completely block the pro-apoptotic activity of metformin.       

Two related FASN inhibitors, cerulenin, and its derivative C75, significantly suppress the 
dysregulated increase of glucose uptake, TG synthesis, and apoptotic death of H4IIE HCCs.  
However, the suppressing potency of FASN inhibitors was significantly lower than the inhibition of 
AMPK. In addition, high doses (higher than 20 μmol/L) of the two FASN inhibitors induced cell 
death per se. in the basal condition without metformin (results not shown). ROS generation was 
also decreased by metformin and sensitive to FASN inhibitors. From these results, we suggest that 
the basal glucose uptake and TG synthesis are not up-regulated in H4IIE HCCs used in our study 
although other studies have reported that FASN inhibitors can induce apoptotic death of several 
cancer cells (Fang & Shen, 2019; Rae et al., 2020). However, most studies used higher doses of 
cerulenin (20 μmol/L, in liver cancer stem cells; Chen et al., 2024) and C75 (50 μmol/L, in prostate 
cancer stem cells; Rae et al., 2020).

From the Warburg effect, glycolysis metabolizing glucose is the main source of ATP (Ward & 
Thompson, 2012). So far, there are three proposed effects for energy metabolism in cancer cells 
(Lee et al., 2022). First, cancer cells produce ATP mainly by glycolysis under aerobic conditions 
(‘aerobic glycolysis’ known as the Warburg effect). Second, cancer cells induce the Warburg effect in 
neighboring stromal fibroblasts (cancer-associated fibroblasts, CAFs). Lactate and pyruvate secreted 
from CAFs are transported into cancer cells and used for ATP production through mitochondrial 
oxidative phosphorylation (‘reverse’ Warburg effect). Third, two different types of cancer cells help 
each other to survive. Glycolytic cancer cells consume glucose to produce lactate and other types of 
‘oxygenated’ cancer cells consume the lactate to produce ATP. However, ATP levels are not reduced 
even in glucose-free conditions and the blockade of fatty acid oxidation decreases ATP production 
by 40% in cancer cells with no effect on normal cells (Lee et al., 2020). Thus, glucose is not a unique 
energy source in cancer cells. In addition to glucose, glutamine is an alternative source of ATP 
in cancer cells (Moreadith & Lehninger, 1984; Piva & Mcevoy-Bowe, 1998). Thus, no definitive 
conclusion is available to understand the exact energy metabolism of divergent cancer cells.

We hypothesized that metformin induces dysregulated, excess glucose consumption and 
cytoplasmic fat accumulation in H4IIE HCC cells. Such a metabolic alteration might produce 
any cytotoxic- or pro-apoptotic insults containing ROS-derived oxidative stresses. In normal 
hepatocytes, high concentrations of glucose and lipids can lead to hepatocellular injury (glucotoxicity 
and lipotoxicity, respectively; Mota et al., 2016). The hepatocellular injury comes from ER stress, 
oxidative stress, and mitochondrial damage (Liu & Green, 2019). However, pieces of evidence of 
glucotoxicity and lipotoxicity in HCC cells are not enough. Palmitic acid augments glucotoxicity, 
oxidative stress, apoptosis, and mitochondrial dysfunction in HepG2 HCC cells (Alnahdi et al., 
2019). Liver X receptor alpha (LXRα)-induced lipogenesis is also lethal in HCC owing to the 
toxic accumulation of saturated fatty acids (Rudalska et al., 2021). Another study also showed that 
excess glucose alone induces cell damage due to oxidative stress and ER stress in Huh7 HCC cells 
(Hayashi et al., 2024). However, the pharmacological inhibition of sodium glucose transporter 2 
(Kaji et al., 2018) or the impairment of aerobic glycolysis (Fiume et al., 2010) hinders the growth of 
HCC cells. From these findings, both the depletion of glucose and the excessive supply of glucose 
might be harmful to the normal growth of HCC cells.

In summary, the present study showed that the metformin-induced pro-apoptotic injury 
was accomplished by dysregulated glucose uptake and the subsequent TG synthesis because the 
inhibition of FASN suppressed the metformin-induced apoptosis of HCC cells. However, the 
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effect of FASN inhibition was relatively weaker than that of AMPK inhibition. Different from 
normal cells, AMPK inhibition exerts various anti-apoptotic activities in HCC cells. Further 
studies are necessary to elucidate the exact pro-apoptotic action mechanisms of metformin in terms 
of metabolic alteration-derived cytotoxic injury in HCC cells.   
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