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Abstract
In eukaryotes, RNA splicing, an essential biological process, is crucial for precise gene 
expression. Inaccurate RNA splicing can cause aberrant mRNA production, disrupting protein 
synthesis. To regulate splicing efficiency, some splicing factors are reported to undergo 
Ubiquitin-like Modifier (SUMO)ylation. Our data indicate that in Saccharomyces cerevisiae, 
the SUMO protease, Ulp2, is involved in splicing. In the ulp2Δ mutant, some ribosomal 
protein (RP) transcripts exhibited a significant increase in the levels of intron-containing pre-
mRNA because of improper splicing. Moreover, we confirmed Ulp2 protein binding to the 
intronic regions of RP genes. These findings highlight a critical Ulp2 role in RP transcript 
splicing.
Keywords:  Ulp2, RNA splicing, Ribosomal proteins, Intron, Post-transcriptional modification

INTRODUCTION

Splicing, which involves excising introns from pre-mRNA and then ligating the exons (De Conti 
et al., 2013), occurs in a wide range of eukaryotes, including yeast, and is mediated by the spliceosome, 
a complex assembly of multiple snRNPs and proteins (Karijolich & Yu, 2010). Splicing is crucial for 
the production of mature mRNA, which is translated into proteins, and for the maintenance of protein 
functional diversity (Singh, 2002). Consequently, splicing aberrations can be significantly detrimental to 
cellular function (Choi et al., 2023; Lee et al., 2023).

The distinct sequence motifs, 5’ splice site, branch site, and 3’ splice site, mark intron–exon junctions. 
The branch site, which is positioned slightly closer to the intron’s 3’ end, is typically followed by a 
polypyrimidine tract, with the branch being centered around an adenine nucleotide (Xie et al., 2023). 
A conserved GU sequence characterizes the 5’ splice site, and an AG sequence marks the 3’ splice site 
(Kitamura-Abe et al., 2004).

Compared with other eukaryotes, yeast has fewer intron-containing genes (Stajich et al., 2007), 
and most, such as ribosomal protein (RP) genes, contain a single intron and are often highly expressed. 
However, intron numbers generally increase with increasing organism complexity. For instance, 
approximately 10% of all human genes contain exons (Sakharkar et al., 2004). Therefore, splicing must 
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be tightly regulated.
In the budding yeast, Saccharomyces cerevisiae, Small Ubiquitin-like Modifier (SUMO) proteins are 

conjugated to target proteins through the sequential action of E1 activating enzymes, E2 conjugating 
enzymes, and E3 ligases (Melchior, 2000). This post-translational modification plays pivotal roles 
in various cellular processes, including transcriptional regulation, DNA repair, translation, and cell 
cycle progression (Choi et al., 2021; Ryu and Hochstrasser, 2021; Ryu, 2022). A subset of SUMO 
conjugates undergoes deSUMOylation catalyzed by the proteases, Ulp1 and Ulp2 (Ryu et al., 2019).

Recent studies indicate that for efficient pre-mRNA splicing, SUMOylation is significantly 
involved in spliceosomal protein regulation (Pozzi et al., 2017). For example, SUMOylation at 
specific sites, such as Lys-289 and Lys-559 on PRP3, a component of the U4/U6-U5 snRNP 
complex, is critical. Mutations that disrupt these SUMOylation sites are reported to impede 
recruitment to the active spliceosome, highlighting the importance of precise SUMOylation 
for RNA processing dynamics. In vitro, recombinant SENP1, a SUMO protease, is reported to 
diminish pre-mRNA splicing efficiency (Pozzi et al., 2017). Moreover, in the human cell line, 
HeLa, mRNA splicing-related proteins are known to undergo endogenous polySUMOylation 
(Bruderer et al., 2011). Here, we investigated the role of Ulp2 protein, a protease involved in 
SUMOylation regulation, in RNA splicing.

MATERIALS AND METHODS

1. Yeast strains and growth conditions
Table 1 shows the yeast strains used in this study. To generate HYS536, the snt309Δ::KanMX4 

cassette was PCR-amplified using SNT309 KO primers and HYS418. The amplified products were 
used to transform MHY500, followed by transformant selection on YPD+G418. The cells were 
grown at 30℃ in a YPD medium with appropriate supplements. RNA was isolated from cells (one 
OD 600 equivalent) grown to the mid-exponential phase.

2. RNA-seq data re-analysis
The RNA-seq dataset, GSE121898, from Gene Expression Omnibus, was used to re-analyze 

ulp2Δ’s differentially expressed introns compared with the wild-type (WT) (Ryu et al., 2018). 
Volcano plots were drawn using R studio’s ggplot2 package.

3. ChIP-seq data re-analysis
The ChIP-seq dataset, GSE130623 (Ryu et al., 2019), from Gene Expression Omnibus, was 
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Table 1. Yeast strains

Strain Genotype Source

HYS114 (WT) MATa his3-Δ200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2 This study

MHY1379 MATa his3-Δ200 leu2-3,112 lys2-801 trp1-1 ura3-52 ulp2Δ::HIS3 YCplac33-ULP2 (Li & Hochstrasser, 2000)

HYS418 MATa ura3Δ0 leu2Δ0 his3Δ1 met15Δ0 snt309Δ::KanMX4 TAP tag library

HYS536 (snt309Δ) MATa his3-Δ200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2 snt309Δ::KanMX4 This study

HYS93 (ubc9-1) MATa his3-Δ200 leu2-3,112::LEU2::ubc9-1 ura3-52 lys2-801 trp1-1 gal2 ubc9Δ::TRP1 This study

HYS90 (ulp1ts) MATa his3-Δ200 leu2-3,112 ura3-52 lys2-801 trp1-1 ulp1Δ::HIS3 yCplac22-ulp1ts(3-33) This study

HYS183 (ulp2Δ) MATa his3-Δ200 leu2-3,112 ura3-52 lys2-801 trp1-1 ulp2Δ::HIS3 This study

MHY7863 MATa his3-Δ200 leu2-3,112 lys2-801 trp1-1 ura3-52 ULP2-6xGly-3xFlag::HIS3MX6 (Ryu et al., 2016)
WT, wild-type.
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used for the re-analysis of Ulp2-Flag enrichment at RP introns. ChIP-seq tracks were viewed using 
the Integrative Genomics Viewer (https://igv.org/) (Liu et al., 2024).

4. Reverse transcription-PCR (RT-PCR) 
Total RNA was extracted from samples using an APure™ total RNA kit (AP Bio, Brooklyn, 

NY, USA). Next, 1 mg of RNA was reverse transcribed using an iScript cDNA synthesis kit (Bio-
Rad, Hercules, CA, USA). Table 2 shows the sequences of the oligonucleotides used for qPCR. 
For qPCR, to determine the expression of the RP gene, RPL31B, cDNA was diluted at 1:100. All 
qPCR reactions were done in technical triplicate, and relative RNA levels were determined using 
the comparative Ct (ΔΔCt) method (Schmittgen & Livak, 2008; Ryu et al., 2020b).

5. Statistical analyses
RT-PCR analyses were done four times. Splicing efficiency was compared using a Student two-

tailed t-test. Data are presented as mean±SEM. p<0.05 indicates statistically significant differences.

6. Data analysis 
Gene ontology (GO) analysis was performed using the Database for Annotation, Visualization, 

and Integrated Discovery (DAVID). GO data were filtered by EASE score, a modified Fisher’s 
exact p-value used on the DAVID database, with an EASE score of <0.1. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis was conducted using the YeastErichr database, 
and the data were filtered based on a Fisher’s exact test with an adjusted p-value of <0.05 and a 
combined score.

RESULTS

1.   The identification and functional categorization of intron-containing genes in budding 
yeast
Unlike other eukaryotes, yeast exhibits a relatively modest number of intron-containing genes. 

Here, using the Saccharomyces Genome Database to determine the number of yeast genes with 
introns, we identified 348 budding yeast intron-bearing genes (Fig. 1A). The genes were categorized 
into the ribosomal and non-ribosomal groups, with further classification into the large and small 
ribosomal subunit genes, and 25% of the intron-containing genes were confirmed to be RP genes. 
Next, we used GO and KEGG pathway analyses to determine the functional categories of intron-
containing genes (Fig. 1B–C). These analyses revealed that RP genes essential for translation were 
significantly abundant, suggesting that during post-transcriptional modification, many RP gene 

Table 2. List of oligonucleotides

Name Sequence

RPL31B pre-mRNA forward ATTTCTCTGTGTTCTGCGATCGAT

RPL31B pre-mRNA reverse AGCGCCATTATAGTGTAAACGTGAG

RPL31B total mRNA forward AAAAGAGGTGTTAAGGGTGTTGAATAC

RPL31B total mRNA reverse ACGGTTTGTAGACCCTTAGCAGAG

RPL31B mature mRNA forward GCACAAAAGACTACATGGTGTCAGTT

RPL31B mature mRNA reverse CAATTCTGGGGCTAGACGGAC

SNT309 KO forward TCCTTTGTTGAGGGCAGAATACA

SNT309 KO reverse CAGAGGTCCAAAGGCTGAAGAA
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intronic regions are accurately regulated through splicing.

2. The effects of Ulp2 deficiency on splicing regulation in yeast
Because recent studies indicate that spliceosomal protein SUMOylation regulates splicing (Pozzi 

et al., 2017), we investigated how SUMOylation deregulation in a ULP2-deficient strain impacts 

Figure 1. 
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Fig. 1.   Analysis of intron-containing budding yeast genes. (A) The percentage of intron-containing genes 
in Saccharomyces cerevisiae was determined using the Saccharomyces genome database. (B,C) 
The characteristics of intron-containing genes were evaluated using gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RP,  ribosomal protein.
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splicing. Next, we used a previously reported RNA-seq WT and ulp2Δ mutant dataset (GSE121898) 
to re-identify differentially expressed introns in the intron-containing genes as depicted in Fig. 
1 (Fig. 2A). When compared with the WT, this analysis identified significant changes in RNA 
transcript levels in the ulp2Δ mutants’ intronic regions (Fig. 2B). Notably, some RP transcripts had 
more than a twofold expression increase in ulp2Δ mutants’ intronic regions (Table 3). Among some 
RP genes, we observed an increase in the levels of RNA transcripts that retained introns within the 
entire set of intron-containing RPs (Fig. 2C), suggesting that ULP2 deletion can dysregulate RNA 
splicing.
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Fig. 2.   ULP2 deletion impaired splicing. (A) An RNA-seq data volcano plot of the differentially expressed 
exons. In the ulp2Δ strain, 320 differentially expressed introns were classified based on |log2 fold-
change|>1 and p<0.05. (B) The ratio of upregulated RNA intron-containing transcripts in ulp2Δ. Left: |log2 
fold-change|>0, right: |log2 fold-change|>1. (C) A bar graph of the upregulated intron-containing RP RNA 
transcripts in ulp2Δ vs WT. RP,  ribosomal protein.
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3. Ulp2 mediates ribosomal protein transcript splicing efficiency 
To confirm if the differences observed from the RNA-seq results are actually because of Ulp2 

binding, we investigated Ulp2 protein binding to each RP intron using a previously reported ChIP-
seq dataset (GSE130623) based on Ulp2-Flag. This analysis confirmed that Ulp2 is highly bound 
to RP intronic regions (Fig. 3A). Based on these results, to examine RPL31B’s splicing efficiency 
using SUMO pathway mutants, we designed RT-PCR primers divided into three parts (Fig. 3B). 
By designing primers within the RPL31B’s intron, we could measure pre-mRNA amounts, and 
primers targeting the two exons that are joined through splicing allowed the assessment of mature 
mRNA levels. As a control, SNT309, an mRNA-splicing factor was knocked out (Albulescu et al., 
2012). For SUMO pathway mutants, we impaired SUMO-E2 conjugating enzyme function with 
ubc9-1, and functionally impaired or deleted SUMO proteases with ulp1ts and ulp2Δ. RNA was 
then extracted from each strain, followed by RT-PCR analysis of the splicing efficiency of RPL31B 
transcripts (Fig. 3C). This analysis revealed that although pre-mRNA levels were not as high as 
in the snt309Δ mutant, they were more than twice higher than in the WT, indicating that Ulp2 is 
required for splicing of some RP transcript.

DISCUSSION

Although recent studies indicate that SUMOylation regulates various RNA metabolism stages 
that are associated with tumorigenesis and cancer progression (Ryu et al., 2020a; Cao et al., 2023), it 
is unclear if the SUMO proteases that regulate SUMOylation directly impact RNA splicing. Here, 
we show that the Ulp2 protein affects the splicing process. These study’s results suggest that Ulp2 
protein can regulate several SUMOylated proteins involved in splicing, which may affect splicing 
efficiency. Additionally, we show that during post-transcriptional modification, ribosomes, which 

Table 3. Predicted splicing defect genes in ulp2Δ vs WT

Type Gene name Description Log2FC P-adj.

Non-RPs BUD25 Protein involved in bud-site selection 1.844 0.005873694

COX5B Subunit Vb of cytochrome c oxidase 1.133 0.038536579

UBC4 Ubiquitin-conjugating enzyme (E2) 1.471 0.002046848

RPs RPS10A Ribosomal protein of the small subunit 1.098 2.19389E-05

RPS30A 1.481 9.33249E-14

RPL2B Ribosomal protein of the large subunit 1.003 0.007109459

RPL6B 1.384 2.19389E-05

RPL17A 1.123 0.002761582

RPL17B 1.019 0.007109459

RPL22A 1.775 3.95807E-11

RPL26A 1.343 2.6809E-05

RPL31B 1.349 0.000783984

RPL33A 1.305 2.66727E-06

RPL37A 1.400 2.66727E-06

RPL40B 1.150 0.002046848

RP, ribosomal protein; WT, wild-type.
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play a crucial role in protein synthesis, can be partially regulated by the Ulp2 protein. In future 
studies, we will aim to provide mechanistic insights into Ulp2 function in post-transcriptional 
modification.
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